Plug-in Hybrid Electric Vehicle Environmental Assessment California Emerging Clean Air Technology Forum July 9, 2008 Mark Alexander Manager, Vehicle Systems Analysis Overview CO_2 Results Air Quality Results Next Steps ### **Overview** CO₂ Results Air Quality Results Next Steps # Power Plant-Specific PHEV Emissions in 2010 PHEV 20 – 12,000 Annual Miles # **Technologies for New Generation in 2010-2015** #### Levelized Cost of Electricity, \$/MWh #### **Electric Sector Scenarios** | Scenario Definition | High CO ₂ | Medium CO ₂ | Low CO ₂ | |---|---|---------------------------------------|---| | Cost of CO ₂ Emissions
Allowances | Low | Moderate | High | | Power Plant Retirements | Slower | Normal | Faster | | New Generation
Technologies | Unavailable:
Coal with CCS
New Nuclear
New Biomass | Normal Technology
Availability and | Available:
Retrofit of CCS to existing
IGCC and PC plants | | | Lower Performance:
SCPC, CCNG, GT,
Wind, and Solar | Performance | Higher Performance:
Solar | | Annual Electricity Demand
Growth | 1.56% per year
on average | 1.56% per year
on average | 2010 - 2025: 0.45% 2025 -
2050: None | SCPC – Supercritical Pulverized Coal CCNG – Combined Cycle Natural Gas GT – Gas Turbine (natural gas) CCS – Carbon Capture and Storage #### **PHEV Medium Scenario** - Low, Medium, High PHEV market penetration scenarios - Corresponds to 20%, 60%, and 80% peak market share - New vehicles take time to penetrate nationwide fleet New Vehicle Market Share: Medium PHEV Scenario Growth of PHEVs and eVMT in Nationwide Fleet #### Overview # CO₂ Results Air Quality Results Next Steps # Electric Sector Simulation Results (2050) PHEV 10, 20, & 40 – 12,000 Annual Miles #### **Greenhouse Gas Emissions Reductions** - Electricity grid evolves over time - Nationwide fleet takes time to renew itself or "turn over" - A potential 400-500 million metric ton annual reduction in GHG emissions (the US currently emits 6 million metric tons annually) Annual Reduction in Greenhouse Gas Emissions From PHEV Adoption # Impacts to Electricity and Petroleum - Moderate electricity demand growth - Capacity expansion 19 to 72 GW by 2050 nationwide (1.2 – 4.6%) - 3-4 million barrels per day in oil savings (Medium PHEV Case, 2050) Electricity Demand: Medium CO₂ Case # Overall CO₂e Results - All nine scenarios resulted in CO₂e reductions from PHEV adoption - Every region of the country will see reductions - In the future, PHEVs charged from new coal (highest emitter) w/o CCS roughly equivalent to HEV, superior to CV - There is unlikely to be a future electric scenario where PHEVs do not return CO₂e benefit | 2050 Annual
CO ₂ e Reduction
(million metric tons) | | Electric Sector CO ₂ Intensity | | | | |---|--------|---|--------|-----|--| | | | High | Medium | Low | | | PHEV Fleet
Penetration | Low | 163 | 177 | 193 | | | | Medium | 394 | 468 | 478 | | | | High | 474 | 517 | 612 | | Overview CO₂ Results **Air Quality Results** #### **U.S. Power Plant Emissions Trends** Source: U.S. Environmental Protection Agency - Power plant emissions of SO₂ and NOx will continue to decrease due to tighter federal regulatory limits (caps) on emissions - Other local and national regulations further constrain power plant emissions - Air quality is determined by emissions from all sources undergoing chemical reactions within the atmosphere # **Net Changes in Criteria Emissions Due to PHEVs** #### **Power Plant Emissions** - Emissions capped under law (SO₂, NOx, Hg) are essentially unchanged - Primary PM emissions increase (defined by a performance standard) #### **Vehicle Emissions** - NOx, VOC, SO₂, PM all decrease - Significant NOx, VOC reductions at vehicle tailpipe - Reduction in refinery and related emissions #### **PHEVs Reduce Formation of Ozone** - Air quality model simulates atmospheric chemistry and transport - Lower NOx and VOC emissions results in less ozone formation particularly in urban areas Change in 8-Hour Ozone Design Value (ppb) PHEV Case – Base Case # PHEVs Reduce Formation of Secondary PM_{2.5} - PM_{2.5} includes both direct emissions and secondary PM formed in the atmosphere - PHEVs reduce motor vehicle emissions of VOC and NOx. - VOCs emissions from power plants are not significant - Total annual SO₂ and NOx -2000from power plants capped by federal law - The net result of PHEVs is a notable decrease in the formation of secondary Change in Daily PM_{2.5} Design Value (µg m⁻³) PHEV Case – Base Case # **Ozone Design Value Exposure Changes** # Daily PM_{2.5} Design Value Exposure Changes # **PHEVs Improve Overall Air Quality** Reduced Deposition of Sulfates, Nitrates, Nitrogen, Mercury Overview $CO_2 Results$ Air Quality Results - State-specific results for CA, OH, due in Q1-08 - Expand air quality analysis to include carbon constraints - Continue GHG analysis as industry economics and technology changes - Adopt market penetration forecasts in place of bounding scenarios - Modify vehicle assumptions as PHEV technology evolves - Expand analysis to other regions of interest Change in Daily PM_{2.5} Design Value (µg m⁻³) PHEV Case – Base Case - State-specific results for CA, OH, due in Q1-08 - Expand air quality analysis to include carbon constraints - Continue GHG analysis as industry economics and technology changes - Adopt market penetration forecasts in place of bounding scenarios - Modify vehicle assumptions as PHEV technology evolves - Expand analysis to other regions of interest Change in Daily PM_{2.5} Design Value (µg m⁻³) PHEV Case – Base Case